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Background: In the kin-cohort design, a volunteer with or
without disease (the proband) agrees to be genotyped, and
one obtains information on the history of a disease in first-
degree relatives of the proband. From these data, one can
estimate the penetrance of an autosomal dominant gene, and
this technique has been used to estimate the probability that
Ashkenazi Jewish women with specific mutations of BRCA1
or BRCA2 will develop breast cancer.Methods:We review
the advantages and disadvantages of the kin-cohort design
and focus on dichotomous outcomes, although a few results
on time-to-disease onset are presented. We also examine the
effects of violations of assumptions on estimates of pen-
etrance. We consider selection bias from preferential sam-
pling of probands with heavily affected families, misclassifi-
cation of the disease status of relatives, violation of Hardy–
Weinberg equilibrium, violation of the assumption that
family members’ phenotypes are conditionally independent
given their genotypes, and samples that are too small to
ensure validity of asymptotic methods.Results and Conclu-
sions: The kin-cohort design has several practical advan-
tages, including comparatively rapid execution, modest re-
ductions in required sample sizes compared with cohort or
case–control designs, and the ability to study the effects of an
autosomal dominant mutation on several disease outcomes.
The design is, however, subject to several biases, including
the following: selection bias that arises if a proband’s ten-
dency to participate depends on the disease status of rela-
tives, information bias from inability of the proband to recall
the disease histories of relatives accurately, and biases that
arise in the analysis if the conditional independence assump-
tion is invalid or if samples are too small to justify standard
asymptotic approaches. [Monogr Natl Cancer Inst 1999;26:
55–60]

Wacholder et al.(1) used the term “kin-cohort” design to
describe a study in which volunteers (probands) are genotyped
and one also determines the phenotypes of probands’ first-
degree relatives. This design was employed by Struewing et al.
(2) to estimate the cumulative probability of developing breast
cancer, as a function of age, for carriers of mutations of BRCA1
or BRCA2 in Ashkenazi Jews from the region surrounding
Washington, DC. That study indicated that the cumulative risk
of breast cancer to age 70 years was 0.56, a number that was
substantially lower than estimates from highly affected pedi-
grees(3), but not inconsistent with the estimate of 0.69 obtained
by Whittemore et al.(4) from segregation analyses (without any
genotyping) of U.S. population-based case subjects and control
subjects and their first-degree relatives. Although the term “kin-
cohort design” might be used for any study of a family that is
selected on the basis of a proband, we shall reserve its use to
those studies in which the probands are genotyped.

For population-based inference, Gail et al.(5) stressed the
importance of representative sampling of probands, conditional
on their phenotypes. Thus, for dichotomous phenotypes withY0

4 1 denoting a case proband andY0 4 0 denoting a control
proband, Gail et al. assumed that the case probands were se-
lected at random from among all case subjects in the population
and the control probands were selected at random from among
all control subjects in the population. One can enrich the fre-
quency of mutation carriers in a kin-cohort study by increasing
the proportion of case probands.

Wacholder et al.(1) estimated the cumulative probability of
developing breast cancer to a given age by recognizing that the
cumulative incidence distribution for first-degree relatives of
probands who carried the mutation was a mixture (nearly 50 : 50)
of carrier and noncarrier distributions, whereas the cumulative
incidence distribution for first-degree relatives of probands who
did not carry the mutation was a different mixture (almost 0 : 100
of carrier and noncarrier distributions). It was thus possible to
estimate the underlying carrier and noncarrier distributions from
data on the cumulative incidence in relatives of carrier and non-
carrier probands. Gail et al.(5) estimated penetrance using like-
lihood methods similar to those in segregation analysis but
adapted to take into account the genotypes of the probands.

The kin-cohort design can be extended by genotyping some
of the relatives of the proband(5) or by expanding the informa-
tion on relatives to include the phenotypes of second-degree and
more distant relatives. Gail et al.(5) used the term “genotyped-
proband design” to stress that the proband is genotyped in the
kin-cohort design. Studies of first-degree relatives of case and
control probands in the absence of genotyping, such as those
described by Whittemore et al.(4) and by Claus et al.(6), have
been called “case–control family studies.” These studies can be
analyzed with the use of classical methods of segregation analy-
sis. Thomas(7) used the term “family cohort study” whether or
not the proband is genotyped.

There are several practical advantages of the kin-cohort de-
sign that invite its use for estimating penetrance(1). Often one
can field and complete the study quickly. Because the disease
status of the relatives can be determined at the date of recruit-
ment of the proband, one does not need to wait to acquire such
information as in a prospective cohort study. In some popula-
tions and for some diseases, one may obtain reliable information
on the phenotypes of first-degree relatives simply by interview-
ing the proband. In such circumstances, time is saved because a
single proband interview yields the phenotypes of several rela-
tives. Moreover, one can inquire about more than one disease in
the same proband interview. For example, Struewing et al.(2)
demonstrated an increased risk for ovarian and prostate cancers
among carriers of BRCA1 and BRCA2 mutations as well as an
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increased risk of breast cancer. One can also study the pen-
etrances associated with additional mutations simply by geno-
typing the proband for the several mutations. Furthermore, as
shown by Gail et al.(5), the sample sizes required by the kin-
cohort design to estimate penetrance of an autosomal dominant
mutation with a desired degree of precision are comparable to or
somewhat smaller than the sample sizes needed for a cohort
study or for a population-based case–control design and can be
substantially smaller if some relatives are also genotyped.

Estimates of penetrance from the kin-cohort design are, how-
ever, subject to certain biases that arise when assumptions un-
derlying the analysis are not met. In this article, we review the
assumptions underlying a likelihood-based analysis of the kin-
cohort design (see“Methods” section) and give an example of
sample sizes required by this design, compared with cohort or
case–control designs (see“Results” section). Then we discuss
the effects of violations of the assumptions on estimates of pen-
etrance and allele frequency (see“Results” section). Finally, we
consider some conditions favorable for the use of the kin-cohort
design and some potential applications apart from estimating
penetrance (see“Discussion” section).

METHODS

Several assumptions underlie a standard likelihood analysis
of kin-cohort data, as described by Gail et al.(5). For this article,
we usually assume that phenotype is dichotomous, although
methods for time-to-disease onset data have also been presented
by Wacholder et al.(1) and Gail et al.(5). A few simulations and
analyses are based on parametric methods for survival data
given by Gail et al.(5), and we comment further on survival
methods in the “Results” section. The key assumptions used in
this article, some of which can be relaxed, are as follows: A1)
Risk follows an autosomal dominant pattern, in which carriers of
the mutant allele have a chance of disease (penetrance)f1 and
noncarriers have penetrancef0; A2) the mutant allele “A” and
wild-type “a” are in Hardy–Weinberg equilibrium (HWE); A3)
given a family member’s genotype, his or her phenotype is con-
ditionally independent of the phenotypes of other family mem-
bers; A4) probands with phenotypeY0 are selected at random
from members of the population with phenotypeY0; A5) disease
status is determined without error; and A6) sample sizes are
large enough to justify standard asymptotic methods.

Under these assumptions, the likelihood for a typical family
selected on the basis of a proband with phenotypeY0 is

P~Y1 | g0!P~g0! | Y0!, [1]

whereg0 4 1 or 0 according as the proband is a carrier or not
andY1 is a vector of phenotype indicators, one for each relative.
The use of the conditional probabilityP(g0 |Y0), instead of
P(g0,Y0), allows one to preferentially select diseased probands
and is justified by assumption A4. The termP(Y1 |g0), instead of
P(Y1 |g0,Y0), is based on the conditional independence assump-
tion A3, which also leads to

P~Y1 | g0! = SP~Y11 | g11!P~Y12 | g12! . . .

P~Y1m | g1m!P~g1 | g0!, [2]

where the summation is over the vectorg1 of indicators of them
relatives’ carrier statuses. In equation 2,P(Y1i | g1i) depends only
on f1 for g1i 4 1 or f0 for g1i 4 0. The probability mass
functionP(g1 |g0) depends only on the allele frequencyP(A) 4

q and is calculated by standard mendelian methods under HWE.
If relatives were also genotyped, the first term in equation 1
would become the product ofP(g1 |g0), which depends only on
q, and of P(Y1 |g1), which depends only onf1 or f0. Unless
otherwise noted, we shall assume that only the phenotypes of
m 4 2 relatives are available for each proband. Further com-
putational details are available in Gail et al.(5) and in a com-
panion paper(8).

RESULTS

Sample Size

The following example is based on estimates by Claus et al.
(6) of the penetrance of alleles predisposing to breast cancer.
Adapting their results for dichotomous outcomes, Gail et al.(5)
usedq 4 0.0033,f1 4 0.92, andf0 4 0.10 to represent a rare
autosomal dominant allele with high penetrance.

In order to estimatef1 with precision ±1.96{Var(f̂1)}
1/2 4

±0.05, a cohort study would require 114 mutation carriers. To
identify these carriers, however, one would expect to need to
screen 17 301 subjects because the allele is so rare. This might
be possible in the context of a retrospective cohort study in
which biologic materials were stored on a large number of
women, but the effort would be substantial. A prospective cohort
study would require many years of follow-up after the massive
screening effort.

It is also possible to estimatef1 andf0 from a population-
based case–control study if the probability of diseaseP(Y0) is
known [or if the allele frequency is known, as discussed by Gail
et al. (5)]. Gail et al. (5) found that 17 030 case subjects and
control subjects would need to be genotyped to achieve the
desired precision onf̂1 using the optimal case : control ratio,
1524 : 15 506.

For comparison, a kin-cohort design in which 10% of the
probands are cases and 90% are controls requires genotyping
16 080 probands if there arem 4 1 relatives per proband. If
there arem 4 2 relatives per proband, 14 935 probands are
required(5). Surprisingly, using only case probands does not
decrease the required sample sizes necessarily. With one relative
per proband, 26 851 case probands are needed, instead of the
16 080 probands above, while with two relatives per proband,
13 418 case probands are needed instead of 14 935.

Substantial reductions in the numbers of required genotypes
can be obtained in the kin-cohort design if it is possible to
genotype the relatives. For example, withm 4 1 and with all
case probands, if one genotypes both the proband and the rela-
tive, then 3549 families are required and 2 × 35494 7098
genotypes. If one only genotypes the relative when the proband
is a carrier, then 3940 families and 4167 genotypes are required
(5).

Thus, the kin-cohort design offers only modest reductions in
sample size, compared with cohort or case–control designs, un-
less it is also possible to genotype relatives. Siegmund et al.(9)
describe increases in efficiency from genotyping additional fam-
ily members in two-stage designs.

As the allele frequency increases, the required sample sizes
for the kin-cohort design decrease dramatically, as is also the
case for cohort and case–control designs. Gail et al.(5) give
tables that allow one to estimate sample sizes required to obtain
required precision on estimates off1. These tables cover a range
of allele frequencies, allow form4 1 or 2 relatives per proband,
and allow for the possibility of genotyping a relative.
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Violations of Assumptions

Selection bias.A serious bias can arise if probands agree to
participate more readily if they have affected relatives, violating
assumption A4. Gail et al.(8) examined families with a mother
proband andm4 2 daughter relatives and withf1 4 0.9,f0 4
0.1, andq 4 0.1. They assumed that a mother with one affected
daughter was twice as likely to participate as a mother with no
affected daughters and that a mother with two affected daughters
was four times as likely to participate, regardless of the mother’s
phenotype. (We call this “1 : 2 : 4 selection bias.”) They used
designs with 1154 families to achieve precision ±5% onf̂1. In
simulations with 5000 repetitions, they found mean estimates
(with standard errors) of 0.944 (0.009) forf̂1, 0.150 (0.015) for
f̂0, and 0.205 (0.015) forq.ˆ Thus, both the penetrances and allele
frequency were seriously overestimated.

Similar overestimates were found when parameter values
f1 4 0.56,f0 4 0.13, andq 4 0.0116 were chosen to reflect
the data in Struewing et al.(2). Becausef1 is nearer 0.5 than in
the previous example, we required more families (i.e., 7634) to
achieve the required precision, and half of these families had
case probands. The average estimates (with standard errors)
were 0.690 (0.021), 0.214 (0.003), and 0.018 (0.001), respec-
tively, based on 559 simulations. Thus, all the parameters were
overestimated, as in the previous example.

Cannings and Thompson(10) commented on similar ascer-
tainment biases in segregation analyses that arise when families
are selected partly on the basis of relatives’ phenotypes. Sieg-
mund et al.(9) reviewed methods for systematically oversam-
pling probands with affected relatives. When such oversampling
is designed, analytical corrections are available to eliminate bias;
however, in usual kin-cohort designs, one has no control over
who volunteers. Even in kin-cohort designs in which one can
select representative samples of probands, one will not control
which selected probands agree to participate or know why some
refuse.

Misclassification of relatives’ phenotypes.If one relies on
the proband to provide information on relatives’ phenotypes,
there is some chance of misclassification. Gail et al.(8) studied
designs with 5893 families, chosen to achieve ±5% precision on
f1 4 0.9, withf0 4 0.1 andq 4 0.01. They defined sensitivity
as the chance that a diseased relative will be described as dis-
eased by the proband and specificity as the chance that a non-
diseased relative will be described as nondiseased. A sensitivity
of 0.9 induced a downward bias of about 10% inf̂0 and q̂ and
a downward bias of 3% inf̂1. A specificity of 0.9 induced large
upward biases; average estimates off̂0, and q̂ (with standard
errors) in 1000 simulations were 0.945 (0.016), 0.184 (0.004),
and 0.017 (0.002), respectively.

Violation of the conditional independence assumption A3.
Gail et al.(8) examined a logistic model that included a normally
distributed familial effect,b, with mean zero and variancet2.
The random familial effect is drawn independently for each
family, and each member of a family shares the same random
effect. A member of a family with carrier statusg and familial
random effectb has a probability of disease

P~Y = 1 | g,b! = $1 + exp~−mg − b!%−1, [3]

wherem1 andm0 correspond tog 4 1 and 0 and are chosen so
that the marginal probabilities satisfyP(Y 4 1 |g 4 1) 4 0.9
andP(Y 4 1 |g 4 0) 4 0.1. For example, fort2 4 4.0,m1 4
3.4095, andm0 4 −3.4095.

The random familial effect induces residual correlations
among family members’ phenotypes, conditional on their geno-
types. For example, witht2 4 4.0, the correlation between the
phenotypes of two family members, each with genotypeg 4 1,
is 0.287. To determine the effects of such familial effects, Gail
et al. (8) simulated 1000 studies, each based on 2178 families,
10% of which had case probands. Mean estimates off1, f0, and
q (with standard errors) from the standard model without ran-
dom effects were 0.948 (0.026), 0.087 (0.005), and 0.015
(0.002), respectively. Thus, the random familial effect leads to
overestimation ofP(Y4 1 |g 4 1) andq and underestimation of
P(y 4 1 |g 4 0). It is as if estimates of parameters of the genetic
model are exaggerated to accommodate the component of fa-
milial aggregation not imparted by the gene under study.

We repeated these analyses using parameter estimates based
on the data of Struewing et al.(2); namely,f1 4 0.56,f0 4
0.13, andq 4 0.0116. Settingt2 4 4.0 in the previous random
effects model, we requiredm1 4 0.3980 andm0 4 −2.9948 to
preserve the marginal probabilitiesP(Y4 1 |g 4 1) 4 0.56 and
P(Y4 1 |g 4 0) 4 0.13. Mean estimates off1, f0, andq (with
standard errors) from the standard model without random effects
were 0.668 (0.046), 0.113 (0.003), and 0.014 (0.001), respec-
tively. Thus, ignoring the random effect increased the estimated
penetrance for carriers and the allele frequency, while it de-
creased the estimated penetrance for noncarriers. These results
resemble those in the previous example.

An independently segregating mutant allele,C, could also
induce residual familial correlation given genotypes forA and
a. Gail et al. (8) found that, even ifC had high penetrance,
it induced little bias in estimates ofP(Y 4 1 |g 4 1), P(Y 4
1 |g 4 0), andq from a naive model based only on allelesA and
a, providedC was uncommon. In contrast, simple segregation
analysis of these data would have yielded results that combined
the effects ofA andC and estimated a combined frequency of
bothA andC. Because the kin-cohort analysis is based on geno-
typing the proband forA and a and because a rare alleleC
induces relatively little residual correlation, serious bias is
avoided.

Violation of HWE. Gail et al. (5,8) studied a population
consisting of two noncommunicating strata within each of which
mating was random and HWE held but between which there was
no mating. Therefore, HWE does not hold in the overall popu-
lation. The allele frequencies within strata were chosen to pre-
serve the carrier frequency in the entire population. Gail et al.
(5,8) found little evidence for bias in estimates off1, f0, or q in
the presence of such violations of HWE, provided allele fre-
quencies were small, because the joint distribution ofY1, Y0, g1,
andg0 was little affected by such stratification.

Validity of asymptotics. As indicated by the examples in the
“Sample Size” section, large samples are needed to achieve good
precision for estimates off1 when allele frequencies are rare.
Fig. 1, taken from Gail et al.(8), shows a histogram of values of
f̂1 based on 5000 simulations, each with 589 case probands and
5304 control probands and withm 4 2 relatives (daughters) in
each family. These numbers of probands were chosen to achieve
±5% precision onf̂1. The distribution off̂1 is symmetric (Fig.
1), and the average estimates (with standard errors) off1 4
0.90, f0 4 0.10, andq 4 0.01 were 0.900 (0.026), 0.100
(0.003), and 0.010 (0.001), respectively. The coverage of a
nominal 95% Wald confidence interval forf1was 0.932, and
that of a profile likelihood-based confidence interval was 0.945.
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By contrast, a smaller study with 74 case probands and 663
control probands often yielded estimatesf̂1 on the boundary
f̂1 4 1.0 (Fig. 2). The small sample distribution off̂1 was
distinctly non-normal, and the Wald confidence interval had
coverage 0.773, based on 1000 simulations. It is encouraging
that the profile likelihood-based confidence interval forf1 had
coverage 0.942.

Survival data. We investigated whether survival data would
be subject to similar selection bias and bias from ignoring vio-
lations of the conditional independence assumption A3. We as-
sumed that the time to cancer onset among carriers followed a
Weibull distribution, P(Tùt) 4 exp{−(lt)a}, where l 4
0.013024 anda 4 2.133435 were chosen to match the cumu-
lative risk of developing breast cancer to ages 50 and 70 years
found by Struewing et al.(2), namely, 0.33 and 0.56. Likewise,
a Weibull model withl 4 0.007845 anda 4 3.289313 matches
the cumulative risk to ages 50 and 70 years of noncarriers found
by Struewing et al.(2), namely, 0.045 and 0.13. The allele

frequency wasq 4 0.0116. The simulated potential ages of the
sister proband, sister, and mother were assumed to be multivari-
ate normal with means and covariances chosen to match data in
Struewing et al.(2), and censoring from competing mortality
and from death following breast cancer onset was taken into
account as described by Gail et al.(5).

We assessed1 : 2 : 4selection bias (see above) from 10 simu-
lations, each including 10 000 families, of which 25% had case
probands. The mean cumulative risk to age 70 years in carriers
(with standard error) was 0.705 (0.022), the mean cumulative
risk in noncarriers was 0.209 (0.003), and the mean estimated
allele frequency was 0.018 (0.002). Thus, as for dichotomous
outcomes,1 : 2 : 4 selection bias led to overestimation of the
cumulative risk in carriers and noncarriers and of the allele
frequency.

We studied violation of the conditional independence as-
sumption by multiplying all hazards within a given family by a
frailty factor, g, that has a chi-squared distribution with 1df.

Fig. 1.Histogram off̂1 for samples with 5893 families, 10% of which have case
probands. The corresponding parameter values aref1 4 0.9, f0 4 0.1, and
q 4 0.01.

Fig. 2. Histogram off̂1 for samples with 737 families, 10% of which have case
probands. The corresponding parameter values aref1 4 0.9, f0 4 0.1, and
q 4 0.01.
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Thus, g has mean 1 and variance 2. Weibull parameters were
adjusted to preserve marginal probabilities in the presence of
this frailty, of P(Tø50 |g 4 1) 4 0.33, P(Tø70 |g 4 1) 4
0.56,P(Tø50 |g 4 0) 4 0.045, andP(Tø70 |g 4 0) 4 0.13.
We conducted 100 simulations each based on 5000 families, half
of which had carrier probands. Using the naive survival model
without frailty, we observed average cumulative risks (with stan-
dard errors) to age 70 of 0.681 (0.060) for carriers and 0.12
(0.003) for noncarriers and an average estimated allele fre-
quency of 0.014 (0.001). Thus, as for dichotomous data, ignor-
ing residual familial correlation led to overestimation of the
penetrance for carriers, underestimation of the penetrance for
noncarriers, and overestimation of the allele frequency.

DISCUSSION

The kin-cohort design has several practical advantages. In
favorable circumstances, this design can be implemented
quickly, compared with cohort or population-based case–control
designs because information on relatives can be obtained from a
single interview of the proband and because one is relying on the
previous history of disease in the proband and relatives to esti-
mate penetrance. Moreover, information on several diseases can
be obtained from a single proband interview, and several muta-
tions can be studied by appropriate genotyping of the proband.
Gail et al.(5) found that the kin-cohort design usually requires
slightly smaller sample sizes than cohort or population-based
case–control designs to achieve the same precision on estimates
of the penetrance among mutation carriers, and the reductions in
sample size can be considerable if some relatives of the proband
can also be genotyped.

Despite the potential practical advantages of the kin-cohort
design, it is susceptible to certain biases that affect other forms
of segregation analysis. In particular, penetrances and allele fre-
quencies can be seriously overestimated if the probability that a
potential proband participates increases with the number of af-
fected relatives of the proband. Two-stage designs that first de-
termine the number of affected relatives before attempting to
recruit a proband afford the possibility of bias correction(9).
Standard population-based case–control designs and cohort de-
signs are relatively impervious to this type of ascertainment bias
(5).

Imperfect specificity in determining the phenotypes of rela-
tives also leads to overestimates of penetrance and allele fre-
quencies. This finding highlights the desirability of applying the
kin-cohort design only in populations that can provide good
family history data or in special settings with registry data that
can provide the needed information on phenotypes of family
members(1). Such a study of a founder mutation in BRCA2 in
Iceland, where there is a cancer registry and recorded links to
family members, yielded estimates of cumulative breast cancer
risk to age 70 years of 37%(11).

Residual familial correlations induced by factors such as
common dietary habits can lead to an exaggerated estimate of
the effects of the gene under study and, in particular, to over-
estimates ofP(Y 4 1 |g 4 1) and q and underestimates of
P(Y 4 1 |g 4 0). We found similar results for survival data. On
the other hand, another rare gene that segregates independently
has little effect on estimates of these parameters for the gene
under study in the kin-cohort design.

Violations of HWE have little effect on estimates of pen-
etrance.

Very large samples may be needed to ensure the validity of
standard asymptotic approximations. In some examples, how-
ever, likelihood-based confidence intervals forf1 had near--
nominal coverage even when the distribution off̂1 was evidently
non-normal. This problem can be alleviated by studying special
populations with higher allele frequencies because the number
of families needed to attain precise estimates and good perfor-
mance of asymptotic approximations is reduced in such popu-
lations.

In many ways, the study of the penetrance of mutations of
BRCA1 and BRCA2 in the Washington Ashkenazi study by
Struewing et al.(2) was an ideal application for the kin-cohort
design. Indeed, Wacholder et al.(1) developed the design with
this study in mind. The prevalence of mutant alleles of about
q 4 0.01 in this population reduced the required sample sizes,
compared with a study in the general population with allele
frequency 0.003, say. Most of the probands were well educated
and could provide good information on the breast cancer status
of first-degree relatives. Although there was some evidence that
the probands had more affected relatives than in the general
population of Ashkenazi women(2), the effect of such an as-
certainment bias would be to overestimate penetrance. The strik-
ing result of this study, however, was that the estimate of pen-
etrance was lower than that obtained from highly affected
pedigrees(3), a result that cannot be explained by such a bias.

An important concern in studies of gene penetrance is the
need to respect the autonomy of study participants and to protect
them from harm that might result from the improper use or
release of confidential genetic information. One issue is whether
the genotyped participants will be offered genotype information.
This should only be done in studies that provide counseling to
determine the wishes of the participants and to convey genetic
information appropriately. The institutional review board over-
seeing the study by Struewing et al.(2) determined that geno-
types should not be revealed to participants and required that all
data linking genotypes with individuals be eliminated after the
main analysis. Kin-cohort designs that seek additional interview
data or samples from relatives selectively on the basis of the
genotype of the proband may inadvertently convey unwanted
information on the risk of carrying an adverse mutation, either to
the proband or to the relatives. Special care would be needed,
therefore, in obtaining informed consent for such designs.

One problem that arose in the context of the study by Struew-
ing et al.(2) was that more than one volunteer proband would
sometimes come from the same family. In this case, it is not
evident how to modify the likelihood(1). Although standard
methods can be used to obtain representative samples of indi-
vidual probands, it is not clear how to sample families without
reference to a proband. Indeed, although the set of relatives of a
sampled proband is well defined, it is not clear how to define a
family without reference to a proband. Thus, there are some
conceptual issues that require further clarification for popula-
tion-based inference when one goes beyond the framework of
representative sampling of probands.

In principle, the kin-cohort design has other potential appli-
cations (1). One can introduce covariates into the penetrance
function and use regression methods to estimate genetic effects,
the effects of measured covariates, and their interactions. A po-
tential weakness of this strategy may be in obtaining accurate
data on covariates in relatives. The kin-cohort design can also be
used to study the main effects of two independently segregating
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genes, as well as their interactions. Particularly large samples
might be required to test for an interaction if only the proband is
genotyped, however, because the genotype of the proband gives
only partial information on the genotype of the relatives. Other
potential applications include evaluation of the effects of a par-
ticular gene on other characteristics of the relative, such as their
survival following cancer onset(12). It would seem that a more
powerful approach for such studies would be to genotype the
relatives rather than to rely on less direct information from the
proband’s genotype, but ethical or cost constraints may prevent
genotyping relatives, and some of them may have died.

There is scope for further methodologic work for survival
models. Wacholder et al.(1) took a nonparametric approach.
They recognized that the survival curve (1 – the cumulative risk
function) of a relative of a proband who is a carrier is a mixture
(approximately 50 : 50) of survival curves for carriers and non-
carriers, whereas the survival curve for a relative of a proband
who is a noncarrier is another mixture (approximately 0 : 100) of
survival curves for carriers and noncarriers. Using Kaplan–
Meier estimates of the observable mixed survival distributions
for relatives of carrier probands and for relatives of noncarrier
probands, they solved two linear equations for the underlying
survival distributions for carriers and noncarriers. Struewing et
al. (2) were not explicit about how allele frequencies were es-
timated, and these allele frequencies are needed to define the
mixing coefficients. Nonetheless, the solutions are insensitive to
the exact allele frequencies for rare alleles. Although the proce-
dures used in the study by Struewing et al. are consistent, pro-
vided estimates of allele frequencies are consistent, in small
samples they can lead to nonmonotonic estimates of the survival
curves for carriers and noncarriers.

In principle, parametric approaches, such as those used by
Gail et al.(5) for a three-parameter improper Weibull model for
carriers and for noncarriers, can be used for inference in a man-
ner similar to that described in the “Survival data” section. In
moving toward a nonparametric solution, one could consider
piecewise exponential models instead, as used by Claus et al.
(6).These approaches have the advantage that estimated survival
curves will be monotonic, provided parameters are fit subject to
their natural constraints. As the number of parameters increases,
however, full likelihood methods may become unstable and may

not converge, and there is no guarantee of consistency if the
number of parameters increases at the same rate as the sample
size. Thus, further work is needed to develop survival estimates
that are weakly parametric or nonparametric and to allow for
potential residual familial correlation.
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